Publications and Manuscripts based on funding from this project


  • Lior Shani, Jana Chaaban, Alec Nilson, Eliott Clerc, Gavin Menning, Colin Riggert, Pim Lueb, Marco Rossi, Ghada Badawy, Erik P. A. M. Bakkers, Vlad S. Pribiag, "Thermal Scanning Probe and Laser Lithography for patterning Nanowire based Quantum Devices", Accepted at IOP Nanotechnology (DOI: 10.1088/1361-6528/ad3257) (2024).
  • Lior Shani, Pim Lueb, Gavin Menning, Mohit Gupta, Colin Riggert, Tyler Littman, Frey Hackbarth, Marco Rossi, Jason Jung, Ghada Badawy, Marcel A. Verheijen, Paul Crowell, Erik P. A. M. Bakkers, Vlad S. Pribiag, "Diffusive and Ballistic Transport in Thin InSb Nanowire Devices Using a Few-layer-Graphene-AlOx Gate", IOP Materials for Quantum Technology 4, 015101 (2024).
  • Mohit Gupta, Vipin Khade, Colin Riggert, Lior Shani, Gavin Menning, Pim Lueb, Jason Jung, Régis Mélin, Erik P. A. M. Bakkers, Vlad S. Pribiag, "Evidence for π-shifted Cooper quartets in PbTe nanowire three-terminal Josephson junctions", arXiv:2312.17703 (2023).
  • S.M. Frolov, P. Zhang, B. Zhang, Y. Jiang, S. Byard, S. Mudi, M. Gomanko, J. Chen, M. Gupta, C. Riggert, A.-H. Chen, M. Hocevar, V. S. Pribiag, “'Data sharing helps avoid “smoking gun” claims of topological milestones due to measurement fine-tuning", arXiv:2309.09368 (2023).
  • Y. Jiang, M. Gupta, C. Riggert, M. Pendharkar, C. Dempsey, J. S. Lee, S. D. Harrington, C. J. Palmstrøm, V. S. Pribiag, S. M. Frolov, "Zero-bias conductance peaks at zero applied magnetic field due to stray fields from integrated micromagnets in hybrid nanowire quantum dots", arXiv:2305.19970 (2023).
  • James M. Etheridge, Joseph Dill, Connor P. Dempsey, Mihir Pendharkar, Javier Garcia-Barriocanal, Guichuan Yu, Vlad S. Pribiag, Paul A. Crowell, Chris J. Palmstrøm, "Competing Uniaxial Anisotropies in Epitaxial Fe Thin Films Grown on InAs(001)"arXiv:2305.14648 (2023).
  • Mohit Gupta, Gino V. Graziano, Mihir Pendharkar, Jason T. Dong, Connor P. Dempsey, Chris Palmstrøm and Vlad S. Pribiag, "Gate-tunable Superconducting diode effect in a three-terminal Josephson device", Nature Communications 14, 3078 (2023).
  • M. J. A. Jardine, D. Dardzinski, M. T. Yu, A. Purkayastha, A. H. Chen, Y. H. Chang, A. Engel, V. N. Strocov, M. Hocevar, C. Palmstrøm, S. M. Frolov, and N. Marom, "Assessment of CdTe as a Tunnel Barrier at the α-Sn/InSb Interface"ACS Appl. Mater. Interfaces 1516288 (2023)
  • B. Heischmidt, M. Yu, D. Dardzinski, J. Etheridge, S. Moayedpour, P. A. Crowell, V. S. Pribiag, and N. Marom, “First Principles Study of the Electronic Structure of the Ni2MnIn/InAs and Ti2MnIn/InSb interfaces”, Phys. Rev. Materials 7, 026203 (2023).
  • S. Matsuo, J. S. Lee, C. Y. Chang, Y. Sato, K. Ueda, C. J. Palmstrøm, and S. Tarucha, "Observation of nonlocal Josephson effect on double InAs nanowires", Communications Physics 5, 221 (2022).
  • Gino V Graziano, Mohit Gupta, Mihir Pendharkar, Jason T Dong, Connor P Dempsey, Chris Palmstrøm, Vlad S Pribiag, "Selective Control of Conductance Modes in Multi-terminal Josephson Junctions", Nature Communications 13, 5933 (2022).
  • D. Dardzinski, M. Yu, S. Moayedpour, and N. Marom “Best Practices for First-Principles Simulations of Epitaxial Inorganic Interfaces”, J. Phys. Condensed Matter 34, 233002 (2022) (Invited paper, Special Issue on “Women in Computational Condensed Matter Physics”
  • Z. Yang, P. A. Crowell, and V. S. Pribiag, "Spin-Helical Detection in a Semiconductor Quantum Device with Ferromagnetic Contacts", Phys. Rev. B 106, 115414 (2022).
  • M.J.A. Jardine, J.P.T. Stenger, Y. Jiang, E.J. de Jong, W. Wang, A.C. Bleszynski Jayich, S. M. Frolov, "Integrating micromagnets and hybrid nanowires for topological quantum computing", SciPost Physics 11, 090 (2021).  
  • M. Yu, S. Moayedpour, S. Yang, D. Dardzinski, C. Wu, V. S. PribiagN. Marom, "Dependence of the electronic structure of the EuS/InAs interface on the bonding configuration", Phys. Rev. Materials 5, 064606 (2021). 
  • S. Moayedpour, D. Dardzinski, S. Yang, A. Hwang, N. Marom, "Structure Prediction of Epitaxial Inorganic Interfaces by Lattice and Surface Matching with Ogre", J. Chem. Phys. 155, 034111 (2021).
  • Y. Jiang, E.J. de Jong, V. van de Sande, S. Gazibegovic, G. Badawy, E.P.A.M. Bakkers, S.M. Frolov, "Hysteretic magnetoresistance in nanowire devices due to stray fields induced by micromagnets", Nanotechnology 32, 095001 (2021). 
  • Z. Yang, B. Heischmidt, S. Gazibegovic, G. Badawy, D. Car, P. A. Crowell, E. P. A. M. Bakkers, and V. S. Pribiag, "Spin Transport in Ferromagnet-InSb Nanowire Quantum Devices", Nano Letters 20, 3232 (2020). 
  • G. V. Graziano, J. S. Lee, M. Pendharkar, C. J. Palmstrøm, and V. S. Pribiag, "Transport studies in a gate-tunable three-terminal Josephson junction", Physical Review B 101, 054510 (2020). 
  • R. L. M. Op het Veld, D. Xu, V. Schaller, M. A. Verheijen, S. M. E. Peters, J. Jung, C. Tong, Q. Wang, M. W. A. de Moor, B. Hesselmann, K. Vermeulen, J. Bommer, J. S. Lee, A. Sarikov, M. Pendharkar, S. Koelling, L. P. Kouwenhoven, L. Miglio, C. J. Palmstrøm, H. Zhang, and E. P. A. M. Bakkers, "In-plane Selective Area InSb-Al Nanowire Quantum Networks", Communications Physics 3, 59 (2020). 
  • M. Yu, S. Yang, C. Wu, and N. Marom, "Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization", npj Computational Materials 6, 180 (2020). 
  • S. Yang, C. Wu, and N. Marom, "Topological Properties of SnSe/EuS and SnTe/CaTe Heterostructures", Phys. Rev. Materials 4, 034203 (2020). 


  • Ogre: A Python package for constructing surface and interface models. Ogre predicts the structure of domain-matched epitaxial inorganic interfaces by lattice matching and surface matching. Download: 
  • Bayesian optimization of the Hubbard U parameter in DFT+U: The BayesianOpt4dftu Python code determines the Hubbard U parameters in DFT+U via Bayesian optimization. The objective function is formulated to reproduce as closely as possible the band gap and the features of a reference hybrid functional band structure. The code is compatible with the Dudarev formalism of DFT+U as implemented in the VASP code. Download: 
  • Visualizer for VASP: Vaspvis is a visualizer for electronic structure calculations using the VASP code. Vaspvis can generate band structure and density of states (DOS) plots including projections of the contributions from specific atoms/ orbitals. Vaspvis can also perform “bulk unfolding” by projecting the band structure of a supercell slab onto the bulk primitive cell. Download: 


Quantum Information Science Award: DE-SC-0019274



Z. Yang et al., Nano Letters 20, 3232 (2020)